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Chemical reactions in high-speed flows

By J. F. CLARKE
Aerodynamics, Cranfield Institute of Technology, Bedford MK43 0AL, U.K.

PN

Hypersonic flows are distinguished by a capacity to provoke endothermic chemical
reactions in their constituent molecules. Interactions of gas-flow and chemical
activity also take place in combustible (exothermic) gas mixtures, such as may be
found in propulsive devices. After a brief validation of the idea that chemically active
flows can be adequately treated via Euler—Prandtl theory, the paper is devoted to a
discussion of some particular features of chemically active very-high-speed Euler-
inviscid flows. The treatment, which is fairly self-contained, brings out some of the
similarities that exist between dissociative and combustible flows by emphasizing the
central part played by shock-waves across which no chemical reaction takes place;
in this way the treatment is novel and helps to point out the closer-than-usual links
that exist between external and propulsive flows in the hypersonic environment. A
new approach to the numerical computation of supersonic two-dimensional steady
reacting flow fields is outlined, as is the potential role of large activation energy
asymptotics in simple dissociating flows. Some new results and suggestions for the
study of high-speed combustion bring the paper to a close.
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1. Introduction

As a broad statement of fact it can be said that any predominantly steady flow of gas
past a vehicle is characterized, when viewed by an observer attached to the vehicle,
by the constancy of the sum of the kinetic and thermal energies of each element of
the gas.. The ratio of the former to the latter energy is proportional to the square of
the local Mach number, so that a specifically hypersonic flow, by which one implies
a very high value of Mach number in the free-stream ahead of the vehicle, is
distinguished by its very large flow-energy levels. An observer travelling with the
vehicle will always see the gas brought to rest at the surface by the ‘no slip” action
of viscosity, so that thermal energy levels in this crucial interfacial region between
airflow and structure will tend to be exceptionally high unless action is taken to keep
the surface cool. How to cope with the consequent rates of heat transfer from gas to
vehicle was, and indeed still is, one of the most important problems that the designer
of a hypersonic vehicle has to solve. Even supposing that one decides to make
theoretical models of hypersonic flow by following the aerodynamicist’s classical
route of first calculating an outer flow by using an inviscid Euler model of flow
behaviour, and then correcting it to account for its failure to satisfy real physical
requirements at the surface by making use of Prandtl’s boundary-layer theory, one
will still encounter regions of relatively slow and therefore thermally very energetic
flow in the inviscid Euler field. This is certainly true in the vicinity of stagnation
points but it is also true, for example, over the whole undersurface of a vehicle during
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atmospheric re-entry in view of the large angles of incidence that are often adopted
to slow the vehicle down before too much thermal energy is transferred from the air
to the vehicle itself.

It is these high levels of thermal energy that make many hypersonic flow fields
different from their slower brethren, since they bring into play modes of internal
molecular energy storage (usually vibrational modes) that are dormant under
conditions of more modest temperature levels; this can ultimately lead to dissociation
of polyatomic chemical species as a result of the violence of intermolecular
encounters at such levels of thermal energy. In short, hypersonic flow is most readily
distinguished from less-energetic supersonic flow by its association with significant
changes in the internal structure of molecules within the flow; its dynamics become
the dynamics of a chemically reacting or relaxing medium.

These things have been very well understood for many years now, since the first
intensive phase of research into the aerodynamics of hypersonic flight in the 1950s
and 1960s. Much of the information that was gleaned at the time found its way into
books and monographs most of which are still available, if not from the publishers,
then at least from the shelves of libraries (see, for example, Vincenti & Kruger 1965;
Clarke & McChesney 1964, 1976 (referred to from now on as C & M); Wegener 1969,
1952) : all of these books deal with some aspects of the influence of finite-rate reaction
effects on the behaviour of compressible continuous media; Hayes & Probstein (1966)
deal with hypersonic flows, mostly for ideal inert gases, but in many places with so-
called real-gas effects in mind ; Zel’dovich & Raizer (1966) describe a very wide range
of physico-chemical effects on the behaviour of continua, and therefore have a great
deal to say that is relevant to hypersonic aerodynamics, although their actual remit
is very much broader than that. Much of this work, which was quite new to
aerodynamicists at the time, starts with some fairly painstaking explanations of such
fields as kinetic theory of gases, thermodynamics and statistical thermodynamics of
gas mixtures, radiation, and the kinetics of chemical and internal-molecular energy
change, relying on such texts as Hirschfelder et al. (1954), Chapman & Cowling
(1970), and others for this kind of basic physics. Whilst obviously relying totally in
its early stages on what was already available in the physical and chemical sciences
at the time, the study of hypersonic flight did also inspire a good deal of research into
many aspects of molecular physics and chemistry. This is especially exemplified by
the rapid developments that subsequently took place in laser physics, particularly in
the field of gas-dynamic lasers (see the review by Christiansen et al. (1975)).

Towards the middle of the 1960s, for a variety of reasons not all of which have
turned out to be particularly good ones, the research effort into hypersonic flows
went into a sharp decline, and teaching of the topic in the Universities effectively
ceased. Of course significant research did continue in one or two countries but this
is neither the time nor the place to try to write a history of efforts to learn about the
science and technology of trans-atmospheric flight. However, it is important to
reiterate the remark about the effect that the pause in hypersonic research had on
teaching in the Universities since, as will appear shortly, this fact has an influence on
the preparation of this particular article.

There is no doubt about the present re-invigoration of interest in hypersonic
aerodynamics around the world. Inevitably there is a certain amount of rediscovery
going on, particularly when it comes to the basics of the topic, and particularly in
view of the virtual cessation of teaching over a period of several years. There is the
natural necessity to rework some of the old ideas so that they should be compatible
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with the use of the computer. For all practical purposes the latter arrived in the
period between the times of intensive activity in hypersonics research, and has
completely transformed both the expectations and the possibilities for theoretical
prediction. Whilst undoubtedly essential to present and future progress, the
computer does have some disadvantages when it comes to teaching a subject in
which physics and chemistry have such a big part to play. There is, as ever, a need
to study simple but educative situations so that the ultimate users of the power of
the computer will have a clear view of what to expect from these extraordinary
machines, and not simply be seduced by the scale of what they can do.

It has become apparent that integration of a hypersonic vehicle with its power
plant holds out many possibilities for the future of hypersonic flight in planetary
atmospheres. As a result there is a necessity to manage another kind of chemically
active flow field to best advantage. The external flow around the vehicle is mostly
involved with endothermic flows in which kinetic and/or thermal energy is used to
break chemical bonds, whilst the propulsion problem demands consideration of
exothermic chemical activity in which chemical energy is made available to the low
and not taken away from it. Although there are some radical differences in the way
in which exothermic and endothermic systems behave, there are also some quite
considerable points of similarity. This fact, coupled with statements in the previous
paragraph, provides a general motivation for the account of chemically-active flows
that is to follow.

Trans-atmospheric flight is distinguished not only by the speeds that are necessary
to get a vehicle into orbit, but even more by the range of atmospheric densities that
such a vehicle will encounter. At very high altitudes gas flow past the vehicle can no
longer be treated as the flow of a continuum and it becomes necessary to formulate
problems of flow past a hypersonic vehicle as problems in the kinetic theory of gases.
It is therefore rather important to know that, in essence, most of the problems that
involve direct interactions between chemical change and the gas flow itself are found
in circumstances for which typical Reynolds numbers are high and the flow can be
treated as the motion of a continuum; these facts are validated in §2.

Section 2 lays down a very few necessary facts from thermodynamics and the
kinetics of chemical change. In view of the central part that these things play in the
processes that form the main item for subsequent discussion, the brevity of this
section, amounting almost to misrepresentation, must be open to criticism. As
remarked above, the early texts on hypersonic flows devoted a considerable
proportion of their space to accounts of these matters for the benefit of professional
aerodynamicists, who had been astonishingly fortunate in having to deal with only
the simplest models of ideal chemically inert substances to advance the science of
aeronautics up to that time, at least as far as external flows were concerned. The
space available for an account of such matters in an article of the present kind, that
aims to concentrate on a few essential features of the flow of chemically active gases,
is obviously a significant limiting factor. In mitigation, one can at least point to the
existence of the old texts and also, now, to two new ones, by Anderson (1989) and
Park (1990). Park in particular gives an extensive and up-to-date account of rate
processes in real air, and includes a full discussion of the close interconnections
between the excitation of vibrational modes of energy in the diatomic molecules that
exist in high-temperature air and the rates of dissociation of these molecules into
their separate atoms. It also deals with the important matters of ionization and
radiation, neither of which will find a specific place in the present brief account of

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

OF

-l ()
52
=0
=
-

oU
m<
o(h
=%
L
o=

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

164 J. F. Clarke

very high speed flows, although some of what will be said here does extend fairly
painlessly to take in the effects of these particular physical processes.

Consideration of flows themselves begins in §4 with statements, in an integral
form, of the laws of conservation of mass, momentum, and energy, and of the
conservation equations for individual chemical species, all according to the Kuler
model of fluid behaviour. This model is consistent with the findings in §2, and implies
that the whole field of low must ultimately be treated in the classical Euler-Prandtl
fashion. Only the Euler formulation will be dealt with in this article; hypersonic
boundary layers are to be described in another paper in the present collection, and
one should also recollect the existence of the text by Dorrance (1962), which deals
specifically with the effects of chemical activity on the character of high-speed shear
layers.

Section 5 examines the kind of discontinuous behaviour that is admitted in
solutions of the Euler equations, and identifies two distinct cases namely slip-
surfaces, across which flow velocity and chemical composition can jump from one
value to another, and shocks. The latter must obey two important relationships, one
thermodynamical (the Hugoniot relation) and one fluid dynamical (the Rayleigh-line
relation, in essence a rule for the behaviour of momentum); it transpires that
the chemical composition must remain fixed, or frozen, as flow crosses the shock
discontinuity.

The treatment in §5 allows for both endothermic and exothermic chemical action.

There is some discussion of the ways in which Hugoniot-curve-Rayleigh-line
analysis can be extended to situations other than those for which the flow is
chemically frozen, and also of the implications of these extensions for the treatment
of curved shock waves.

The next section deals briefly with oblique shocks for the case of endothermic
reaction downstream of the wave, and establishes some relations that will be useful
in the work that is to follow.

Section 8 introduces the topic of continuous solutions of the Euler equations and
describes some special results for the case of plane steady two-dimensional flow,
employing the natural orthogonal curvilinear system of coordinates that uses
streamlines as its basis. This system of coordinates has the advantage that many
results appear in a very economical form and so are rather more easily understood ;
this applies particularly to the derivation of characteristic forms of the equations
that govern behaviour in the continuous parts of the flow field. There can also be
advantages for the construction of grids on which to make numerical calculations.

The Prandtl-Meyer expansion fan plays a very important part in studies of the
two-dimensional steady flow of chemically inert gases. This particular flow
phenomenon owes its simplicity to the fact that it is a similarity solution of the
differential equations of motion and, accordingly, it is interesting to enquire whether
such a similitude extends to the case of reacting flows. It is shown in §8 that there
is no similarity solution when the differential equations of motion contain the
‘source’ terms that are necessary to describe the progress of chemical reactions.
However, it is found that similitude is preserved for inert expansive flows in the
natural coordinate system. A numerical computational method is therefore proposed
that exploits the particular character of a natural coordinate system when making
use of the operator-splitting methods that become necessary in the presence of finite-
rate chemical reactions.

Section 9 takes up the matter of vorticity, since continuous creation of this fluid
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property by the direct action of finite-rate chemical change is another feature of the
reacting system that distinguishes it from inert flows. Amongst other things, a
general expression is found in this section for the jump in vorticity experienced by
fluid passing through any curved shock-wave that exists in a non-uniform reacting
stream. Such shocks can be anticipated in hypersonic flows near deflected control
surfaces, for example.

There is evidently some scope for the investigation of boundary-layer development
beneath such vortical flows, particularly in the way that phenomena such as flow-
separation and transition may be affected.

Section 10 examines some particular flows in order to illustrate in some detail how
they interact with chemical activity. Consideration of a simple normal shock that
initiates a single (endothermic) dissociation reaction shows how dissociative processes
dominate and proceed very rapidly immediately downstream of the shock, to be
followed by a much slower and protracted progress towards equilibrium as the
recombination reaction begins to get under way. Of course there is nothing new
about such results, but they are acquired here by a very economical and accurate
approximate method adapted from recent work in combustion theory. Some of the
lessons learnt in this first subsection of §10 are then applied to bring out basic
features of flows through oblique shocks, and of flows in the neighbourhood of blunt
bodies, where freezing of the dissociation reaction may be observed.

The last section in the paper turns to the rather different matter of combustion in
high-speed flow, with an intention to understand some of the broad physical
processes that will occur in propulsion devices that deposit chemical energy in
supersonic streams. Starting from the concept of the Chapman—-Jouguet detonation
wave as one such physical process it is shown that the problem has close affinities
with recent work on the unsteady evolution of detonations. As a consequence it can
be seen that there are possibilities for combinations of shock-generated ignition and
subsequent combustion, controlled to some degree by the flow itself, that do not
involve detonation waves as such.

The paper attempts to give a general view of the way in which energy in the
internal structure of molecules can influence a high-speed flow, and to do so in a way
that emphasizes similarities between the treatment of endothermic and exothermic
situations at least as much differences. Several new results will be found in the text,
and some old results are derived or presented in new ways. It is hoped that there may
be benefits from the unity of presentation which, in keeping with remarks made
earlier in this Introduction, is generally didactic in character. Some lines of research
are identified and not the least exciting of these is the effort that should go into
developing the understanding of combustion in the high-speed flow environment.

2. Co-existence of continuum flow, finite-rate chemistry and high
Reynolds number

The local Mach number M is an important parameter in any compressible flow
because it is a measure of the kinetic energy of flow as a multiple of the gas’s thermal
energy. Strictly it is M* that is proportional to this measure, since M is usually
defined to be

M = u/ay, (2.1)
where wu is local gas speed and a; is local sound speed (strictly, a; is the local frozen
speed of sound ; more will be said about this matter below). The association of a; with

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

e

P\

A Y

|
L3
A \

P

{

A

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/an \

a

THE ROYAL A

A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

166 J. F. Clarke

a local signal or sound speed is readily understandable when one remembers that a;
is an average thermal, or random, molecular speed (af is therefore indicative of the
amount of thermal energy in the gas).

The kinematic viscosity of any gas, written as v, is related to af via

V= afteon = ayl, (2.2)
where ¢, is an average time interval between collisions of pairs of molecules and
I'=ayteon (2.3)

is the local molecular mean free path, namely an average distance travelled by a
molecule between successive collisions. Introducing a length scale L that typifies the
situation under consideration, M in (2.1) can now be rewritten in the form

M = (uL/v)(v/La;) = (ul/v)(l/L) = (Re)(Kn), (2.4)

where Re and Kn are the Reynolds number and Knudsen number respectively.

In any flow that is influenced by chemical reactions the ratio of local flow time L /u
to local chemical time ¢, will evidently be significant. Reactions (e.g. dissociation)
usually take place between pairs of molecules so that local chemical or relaxation
times will be measured in multiples of ¢,,,; i.e.

tenem = tcoll'@' (2.5)

The number £ is frequently very large and depends upon the energy of a molecular
encounter; since the latter is most often signified by the value of absolute
temperatures 7', Z is usually considered to be a function of 7" although, from what
has been said above, a? would be an equally good variable to use. The ratio L /ut gy,
defines a local Damkdhler number &, namely

D = Ljut o, # = (MEnR )™, (2.6)

where the last result follows from (2.3) and the definitions of M and K» in (2.1) and
(2.4) respectively.

During re-entry of Earth’s atmosphere by the U.S. Space-Shuttle Orbiter-Vehicle,
Re lies in the range 10?-107. With M of order 10, (2.4) implies that Kn is 1072~107%
so that it is reasonable to treat re-entry as a problem in the dynamics of a continuum.

Furthermore, with Z of order 10* or greater, MKnZ is generally of order, or greater
than, unity. Values of 2 <1 imply that chemical times are comparable with, or
larger than, flow times, with the consequence that finite-rate chemical and/or
relaxational effects must be included in continuum models of re-entry flow behaviour.

Of course such statements as the ones just made are broad and indicative rather
than precise and prescriptive. Rewriting (2.6) and (2.4) to give

D = Re(M°R )™ (2.7)

and remembering that Re and M can be purely local values, it is clear that wide local
variations in & are possible within the flow about any particular vehicle. The ‘rate
number’ Z is invariably large, but local M values (behind a nearly normal shock-
wave, for example) may be quite small, even in hypersonic flight.

Except at very large altitudes Re is large and it is therefore reasonable to treat the
flow-field around a re-entry vehicle by the classical Euler—Prandtl, or boundary-
layer, methods. The remainder of this article is confined to a discussion of the
influence of finite-rate chemistry on Euler flows.
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3. Thermodynamics and rate processes

The particular character of a gas or gas mixture, and its influence on dynamical
behaviour, is found in its caloric and thermal equations of state. These can be written
formally as

e=ce(p,v,c,), p=w17T.c,), h=et+py, (3.1)

where e, h, p, v and T are, respectively, intrinsic energy per unit mass, enthalpy per
unit mass, pressure, specific volume (=1/p where p is density) and absolute
translational temperature ; ¢, stands for the set of mass fractions of chemical species
a(=1,2,...,N).

Strictly, of course, one should specify sufficient information to enable all of the
internal-energy states of each molecule to be followed during the course of any flow.
Simply for purposes of brevity in the present article, this is not done, and so some
care must be taken with interpretation of results. Attention is drawn to the recent
text by Park (1990), which goes into such matters in great detail, and also to C & M
which uses a formulation of the basic equations of reacting gases that widens the
meaning of chemical species to take in some prescription of internal-energy levels.

It is usually quite adequate to treat each pure chemical species in the mixture as
thermally perfect; in other words its partial pressure p, will be given by

Do = pe(R/W) T, (3.2)

where R is the universal gas constant and W, is the molecular mass of a. The total
pressure p is then just the sum of p, over all &, with the result that

p=pR/W)T, 1/W=3 c,/W,. (3.3)

a=1

W is the molecular mass of the mixture and depends directly on the set of ¢, values.
As a result it can be seen that a mixture of thermally perfect gases does not behave
like a thermally perfect gas when changes of chemical composition accompany
changes in other thermodynamic quantities.
States of chemical equilibrium are prescribed for any pair of thermodynamic
quantities, e.g.
€0 = Corg (P2 V): (3.4)

As a result, chemical disequilibrium implies that within the flow
Co 7 Caeq> (3.5)

and it is in this way that a lack of equilibrium is recognized in hypersonic flow-fields.
It is useful to note that, when complete chemical and thermal equilibrium prevails,
using (p, v) or (p, T) or (p, T), etc., as the pair of thermodynamic variables with which
to calculate c,,, results in a set of identical values for these composition variables. If
the (p,v) or (p,T), ete., pairs are taken in a flow that is not in a state of chemical
equilibrium each pair will be associated with different values of c,,.

Despite its intrinsically arbitrary character it can often be useful to define local
equilibrium values within a non-equilibrium flow. Naturally it is important to be
consistent with any such definitions in the treatment of particular problems.

If chemical equilibrium is postulated to apply throughout a flow, (3.4) implies that
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(3.1) can be shortened to read e = e(p,v). This particular situation is sufficiently
important to be worth acknowledging with the special notation

e = eeq(p,v), (3.6)

which can be continued with other variables as may be appropriate (e.g.
P = Peg(v, T) from (3.16)).
Entropy

It is possible to make a lot of progress with the solution of problems in gas-
dynamics without even raising the matter of entropy. However, it is occasionally
convenient or even necessary to introduce this variable; writing s for the specific
entropy of a mixture of N chemical species the Gibbs relation can be presented in the
form N
Tds =dh—vdp— X u,dc, (3.7)

a=1
(cf. §1.11, 13-15 in C & M), where the x, quantities are partial specific Gibbs, or
chemical, potentials. That is to say, with Gibbs potential for the mixture defined by
g=h-—Ts,
Mo = (ag/aca)p, T, cp = ha_TSa’ (38)

where 4, s, are the partial enthalpy and entropy of species a respectively (note that
the condition of fixed pressure p must be taken to mean that each separate partial
pressure p, is fixed ; subscript ¢, implies that all mass fractions except c, are fixed
during the differentiation). Both %, and s, are made up from sums of translational
and molecular-internal energies and entropies.

If changes in the ¢ -quantities take place sufficiently quickly relative to changes in
other flow variables it is often assumed that they do so via states of local equilibrium.
Naturally this does not mean that the dc, vanish. Instead, certain combinations of
chemical potentials, that are associated with particular chemical reactions in the
system, do go to zero. In such circumstances it can be shown (cf. C & M, §1.14) that

(3.7) reduces to Tds = dh—vdp (3.9

when equilibrium conditions prevail. Of course (3.7) also takes this identical form
when the flow is frozen, since each and every dc, is equal to zero in that case; one
must remember that differential increments, such as ds and dh, have very different
meanings in the two limiting situations of frozen and equilibrium flows.

Sound speeds

Among the most important derived thermodynamic quantities are the speeds of
sound-propagation through the gas mixture. It is necessary to use the plural here in
view of the fact that sound speeds depend upon certain partial derivatives of
enthalpy and/or intrinsic energy and it is therefore essential to state, not only which
thermodynamic variable is held constant and which is to change, but also what is to
be done with each of the ¢, terms during the processes of differentiation.

Two limiting sound speeds are of most significance:

(i) frozen sound speed a,, for which all ¢, are fixed;

(ii) equilibrium sound speed a,, for which all ¢, follow their local equilibrium
values; a, is only unambiguous when the field through which the sound waves
propagate is in a true state of chemical and thermal equilibrium.

The study of sound-wave propagation through a reacting or relaxing atmosphere

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Chemical reactions in high-speed flows 169

is not a trivial task, although many results are now well-established. A very early

study of propagation through a dissociating gas was undertaken by Einstein (1920)

and since then the matter has been taken up, re-worked, and extended in various

ways, by a large number of people. For present purposes it must suffice to list a few

directly relevant facts (C & M can be consulted for details and explanations).
Frozen sound speed is defined by the relation

at = — @h/3p),, ../ (e/3p), . (3.10)
Equilibrium sound speed is defined by
a’g = - (aheq/ap)p/(aeeq/ap)p’ (311)
and it must always be the case that
(@F)eq > @g, (3.12)

where ()., implies that af is to be evaluated at the same equilibrium state as the one
that applies to a?.

Sound propagation in a reacting gas is dispersive and dissipative ; harmonic waves
which have real frequencies have phase speeds that approach a,; as their frequency
increases without bound, and a, as their frequency diminishes to zero. High-
frequency waves are relatively strongly damped, low-frequency waves are relatively
lightly damped.

In view of the near-equilibrium character of low-frequency waves it is possible to
represent the damping effect of reaction or relaxation in an approximate way by the
addition of an equivalent bulk viscosity to the shear-viscosity term that appears in
the ‘diffusivity’ of sound (Lighthill 1956). The equivalent bulk viscosity idea is of
very restricted validity (C & M, §1.15 and ch. 2).

Reaction rates

The one feature that makes the flow of gases at high speeds and temperatures
different from behaviour under more modest conditions is the creation or destruction
within the flow of chemical species. The consequent movement of energy into and out
of the energies of chemical bonds, or the internal structures of molecules, must exert
direct influence on the flow since such energy can only be drawn from thermal or
kinetic energy of the flow itself.

A proper understanding of the form and character of chemical reaction rates is
therefore crucial. The study of chemical kinetics is a large discipline in its own right
and any attempt to even summarize it here would be absurd. An important recent
text that gives much up-to-date information on the kinetics of chemical and internal
molecular change as it affects the behaviour of air is the book by Park (1990),
although some information on the matter is available in all of the texts quoted in the
Introduction. For present purposes a grossly simple caricature of a chemical rate
expression must suffice.

First, one must acknowledge that chemical activity in almost all hypersonic flows
proceeds as a result of molecular collisions. Expressions for the rate of production of
a chemical species must therefore contain a term that signifies the probability of
molecular encounters, and must therefore contain products and powers of
concentrations of the species (usually given in terms of mass fractions c,). As
explained in §2, the rate at which such molecular encounters produce new species
must be some multiple, usually a very large one, of the average time-interval
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between molecular collisions. As a result the rate of production of a chemical species
a, say, in units of mass per unit volume per unit time, can be written as K, where

K, = (p/tenem) P(cy, p, T). (3.13)

Here P is the collision probability factor, which does usually depend upon density
and temperature as well as on the ¢, quantities, whilst ¢, .., is a chemical time (cf. §2)
that will also usually depend upon p and 7'

The key features of (3.13) are the algebraic (not differential) character of the
numerator pPP and the existence of time ¢, in the denominator.

Chemical equilibrium is achieved when PP = 0, and it is evident that any non-zero
value for P is expressive of the degree of departure of actual local ¢, values from
equilibrium values based on local p, T' conditions.

4. Integral form of the conservation equations

If, as is suggested in §2, all transport effects are neglected and the flow is steady,
the integral forms of the conservation laws for mass, momentum, and energy are

fpu.now=o, (4.1)
o
J {pn+pu-nutdod = 0. (4.2)
oA
J (e+pv+iu-u)pu-ndeod =0, (4.3)
oA

where p, p, e and u are density, pressure, specific intrinsic energy and flow velocity
vector respectively. The integrations are taken over a fixed surface o/, that
surrounds a finite volume ¥~ of the flow field (n is the unit vector normal to .o that
points out of ¥").

Since ¢ depends upon both the chemical composition of the gas mixture and on the
energy content of the various modes of motion within the internal structures of the
molecules it is necessary to write down conservation laws for these variables too.
Thus, with ¢, denoting the mass fraction of a species «, it follows that one must make

j pcau'nd&/=J K, dv', a=1,2,...,N, (4.4)
o ¥

where K, is the local rate of production of species « in units of mass per unit volume
per unit time as a result of chemical reactions; K, is integrated over the whole volume
7" on the right-hand side of (4.4).

5. Discontinuous behaviour and the requirements of conservation

The set of integral (Euler) conservation laws in §4 admits the possibility of
discontinuous solutions for some of the flow variables. Assuming that discontinuities
occur across a surface S:8(x) = 0 they must appear in one of two forms, depending
on whether u-v is zero or not zero, where

v = VS/|VS| (5.1)
is the unit vector normal to the surface S.
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&L:8(tx)=0

Lo

Figure 1. Conditions at a discontinuity-surface &. &/, (a), &, (b) and &, (¢) make up the
surface &/ that surrounds volume ¥~ (cf. §4); ¥"—0 in the present situation.

When the normal component of velocity
Uy = UV (6.2)

is zero S is a slip or contact surface €; all physical variables in §4 may experience
jumps across € except, trivially, u, itself and, from (4.2), the pressure p. The fact
that tangential components of velocity

U, =u—u,v (5.3)

may be different on either side of 4 accounts for the name ‘slip surface’, but it is
potentially at least as interesting to observe that chemical composition may suffer
discontinuous change across %, which may therefore separate regions of different
chemical composition.

When «, # 0 the character of S is quite different from %; the new discontinuity
surface will be called & from now on. Figure 1 is a sketch of the general situation,
with gas-velocity components in the plane of the paper ahead and downstream of a
discontinuity surface.

If subscript 2(1) identifies a value downstream (upstream) of & it is useful to define

[f]:

Lf1=fa=fos (5.4)
since the jump relations that derive from (4.1)—(4.3) can then be written as
[pt,] =0=>p %y = Pothyy =m # 0, (5.5)
[u] =0, (5.6)
[p+pus] =0, (5.7)
[h+3iu2] = 0. (5.8)

These results emerge quite simply from (4.1)—(4.3) by letting the volume ¥"—0; the
surface o then shrinks down to enclose &, as indicated in figure 1. The quantity m
is the mass-flux through &, and is defined in (5.5) for later convenience.

On physical grounds one expects to find that the rate terms K, are bounded, with
the consequence, from (4.4), (4.5) and (5.5), that ¥ — 0 demands

[e,] = 0. (5.9)
Phil. Trans. R. Soc. Lond. A (1991)
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The & -like discontinuities that are admissible as solutions of the Kuler equations are
therefore fundamentally of a kind that can be designated ‘frozen’, since chemical
and/or internal-molecular changes are not allowed to take place across them. As such
these & waves are formally identical with the shock discontinuities that propagate
in Euler models of chemically inert and non-relaxing gases.

It is well known (see, for example, Whitham 1974, ch. 1) that the shock
discontinuity is the best that the Euler equations can do to describe the real physical
system in which nonlinear effects in wave propagation compete locally with the
diffusive influences of (primarily) viscosity and thermal conduction (Lighthill 1956).
The latter is a ‘Navier-Stokes’ explanation of shock-structure in a continuum, and
shows that shock thickness is measured on a scale of molecular mean free path [ (cf.
(2.3)). As a shock strength increases the Navier—Stokes predictions of shock structure
become increasingly inaccurate in the shock’s upstream regions and it then becomes
necessary to resort to kinetic theory for accurate results (see, for example, Bird
1976). The total change from upstream-inflow to downstream-outflow across the
shock-wave is still described by the jump relations (5.5)—(5.8) provided that the
local radius of curvature of the shock is very much greater than its ‘Navier—Stokes’
or ‘kinetic-theory’ thickness (roughly /). For all practical purposes this proviso is
never violated in any flow for which Euler-Prandtl theory is valid.

The jump conditions in this section are exact in the context of both inert and
chemically active Euler flows. The next section translates the jump conditions into
some particularly useful forms, and then extends their applicability somewhat by
considering systems for which the smallest radius of curvature of surface & is very

large compared with a chemical or relaxation length, such as w,, ¢, (cf. §2).
6. Hugoniot-curve and Rayleigh-line relations
The jump relations in (5.5)—(5.8) can be used to show that
&L p]+m?v] =0, (6.1)
Hy: 2[h]— (vy+vy) [p] = 2[e]+ (py + ) [v] = 0. (6.2)

The Rayleigh line .Z is a straight line of negative slope on a p, v-diagram for any
given pair of values p,,v,. In view of conditions (5.9) for ¢, it is clear that the
Hugoniot relation #; defines another p, v-plane locus. Both % and J#; pass through
the fixed point (or ‘origin’) p,, v; and any additional intersections of £ and #; define
new pairs of (p,v)-values that describe changes across the frozen shock &. Of course
the actual jumps across & will depend upon the character of the caloric equation of
state (3.1). Despite this it is possible to make many general assertions about the
changes that will occur across & in gases. Hayes (1960) has discussed the matter in
a very general way and a number of particular results that are relevant to the present
topic, based on Hayes’ treatment, can be found in C & M.

One or two facts, that will be sufficient for present purposes, can be stated or
illustrated as follows.

A typical #4-curve for a mixture of thermally perfect gases is depicted, together
with some other Hugoniot-curves whose significance will be explained in due course,
in figure 2. The tangent to #; at the origin is given by —p2a? and the second
derivative (0%p/0v®) on J#; is positive. (This condition is only violated in gases for a
number of high molecular weight hydrocarbons and fluorocarbons near to their
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exothermic

12y

| (i) <

1% : v

Figure 2. Hugoniot curves J#,, #,; and Rayleigh lines % on the (p,v)-diagram. (@) Shock OB
propagating into an equilibrium atmosphere and initiating an endothermic reaction BE. (b) Shock
OB propagating into a dis-equilibrium atmosphere and initiating an endothermic reaction. (c)
Shock OB propagating into a dis-equilibrium atmosphere and initiating an exothermic
(combustion) reaction BE,: a subsonic combustion wave (fast flame) OE} propagating into the dis-
equilibrium atmosphere. (i) 5, (ii) #, (iii) ¢; = ¢, (p;,v1), (iV) Coq # Coq (D1, V1)-

vapour-liquid phase boundary (Thompson & Lambrakis 1973).) Rayleigh line Z
therefore only intersects #; twice, once at the ‘origin’ O and once again at B.
Entropy at B is greater than (less than) entropy at O when [p] > 0 (<0); hence
compression shocks are permissible solutions of the Euler equations while expansion
shocks are not. The differential increment of entropy on J#; is given by

Tds = [v]*mdm, (6.3)

so that s increases as the normal propagation speed (or mass flux) increases.

The minimum value of u, is a;,; in other words the weakest frozen shock is an
isentropic frozen sound wave. The shock strength [ p] increases as normal propagation
speed becomes supersonic relative to a;,; the normal component of the downstream
speed must be subsonic relative to ay,.

Extension of the definition of Hugoniot curves

The frozen shock produces instantaneous changes in p, v and hence, via (3.3), the
temperature 7. As a result & will invariably act as a trigger to relaxational and
chemical activity at faster rates than those that prevail ahead of the shock, since p
and 7T increase across & and chemical-reaction and other such rates increase with
increasing molecular collision frequency and average collision energy.

In the implied circumstance of relatively rapid inputs to the flow field from source-
terms downstream of & one can proceed as follows. Consider first a special situation.
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Assume that volume 7" in §4 is of finite size and that surface .7, that surrounds
it, consists in part of the surface of a parallel stream-tube, across which there is no
flow, by hypothesis; . is closed by a pair of stream-tube cross-sections that are
perpendicular to the stream tube’s axis. Conditions are uniform across any such
cross-sections, the flow is one-dimensional, and jump conditions (5.5), (5.7) and (5.8)
and the Z-relation (6.1) now apply to changes from the upstream section ( ), to the
downstream section ( ), across a finite volume ¥~ of fluid. Shock & is assumed to lie
just downstream of the ( ), section. The relation (6.2) is formally unchanged in
present circumstances, but it is necessary to describe carefully what is meant by [A]
since there is now time for any fluid element that crosses the volume ¥~ to undergo
significant changes as a result of inputs from the source terms.

For example, the flow may be driven to a new state of equilibrium by the time it
reaches section ( ),. In such circumstances the jump in 4 (cf. (6.2)) must take account
of the fact that all of the ¢, variables have local equilibrium values at section ( ),, and
not the fixed ( ), values that are implicit in the designation ;. The new, equilibrium,
value for

g = h(Py, Vg, Cue(P2y V3)) = h2eq(p2a Vy)
is acknowledged by the designation 4, for the new Hugoniot. Figure 2 depicts some
possible 5, curves but shortens the notation for chemical state, etc., by just writing
¢ = Coq(p, v), which is sufficiently suggestive at this stage.

Figure 2a depicts a particular case, for which the stream ahead of & is itself in a
state of equilibrium, since both #; and J, pass through the upstream state point at
O. The plane steady phenomenon that is modelled by the sketch in figure 2a consists
of a shock-jump from the equilibrium stream at O to conditions B, where
composition is unchanged, followed by a ‘relaxation-zone’ from B to the new
equilibrium state at E. The B to E transition is then a continuous change (of all of
the flow, thermodynamical and chemical variables) that takes place along the
Rayleigh line Z. As depicted in figure 2a it is an endothermic transition; in other
words energy goes from the flow into the breaking of chemical bonds (dissociation)
and/or into internal molecular energy modes. The physical distance that the flow
must traverse between states B and E will, strictly, be arbitrarily large, with state
E being approached exponentially slowly. However, for practical purposes, the
transition distance or relaxation length can be roughly measured in units of a;¢.,.m
or, what is equivalent, ZI (cf. §2). Knudsen number Kn (= divided by a body length
L) is in the range 107! to 107° for a typical Shuttle re-entry, so that £I can vary from
a small fraction of L to many times that value.

The steady plane compression wave, whose structure has just been outlined briefly
above, is about the most elementary finite-amplitude disturbance that can be found
propagating into an equilibrium atmosphere of dissociating and relaxing gases. It is
an odd fact that no wholly satisfactory analytical, or even acceptably-approximate
analytical, solution for this quite basic element of a hypersonic flow field has been
found (even for the simplest case of a single chemical reaction with no coupling to
molecular vibration) until quite recently. A short account of this solution will be
given in §10 below.

Figure 206 illustrates a generalization of the situation in figure 2a, specifically that
the stream entering & is assumed not to be in a state of equilibrium. The sketch
suggests that #, will pass to the left of O and is, in this particular sense therefore,
indicative of an endothermic reaction (cf. Hayes 1960). The relaxation region is still
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B-to-E along % and is formally the same as the continuous transition in figure 2a;
only the initial conditions (at B) will be different.

Finally, figure 2c¢ illustrates the situation when the final equilibrium Hugoniot #,
is exothermic in character. Anything like a full discussion of the character of
Hugoniot curves is out of the question in the present article. In the context of figure
2¢, in particular, it is both simplest and sufficient, for present purposes, to assume
that A is given by the elementary relation,

h=Apv+cQ, (6.4)

where 4 is a pure number, @ is an energy of reaction per unit mass of the gas mixture
and c is the fraction of the single reactant species in the flow that remains unburnt.
Assuming that the reaction is simply a one-step chemically irreversible decompo-
sition it follows that ¢, = 1 and ¢, = 0. Therefore J#, is actually a constant-c locus,
and some of the features of #; described above apply equally well to #,(c,, = 0).

One important condition for #, in figure 2¢, that is additional to the ones already
listed for J#;, concerns points of tangency between # -curves and %-lines, usually
called Chapman—-Jouguet or CJ points. The downstream component u,, of the flow-
speed at such a point must be sonic, equal to a;, in present circumstances (i.e. where
Coq = 0).

anve OBE,, in figure 2¢ consists of an & shock-jump, O-to-B, followed by a
continuous exothermic reaction-domain B-to-Ep,; the latter is drawn as a CJ point
in the figure. Since %, evidently represents a wave travelling at supersonic speeds
relative to a; into gas ahead of &, the whole wave represents the classical
Zeldovich-von-Neumann—Doring (ZND) model of a planar CJ detonation.

Some combustion specialists assert that plane ZND waves are theoretical
abstractions that ‘never’ occur in practice, even in laboratory shocktube ex-
perimental arrangements that are certainly more ‘one dimensional’ than most flows.
One must have some sympathy with such assertions, but not so much as to decline
to pay attention to the roles that plane or nearly-plane shocks and combustion waves
(such as B-to-Ep in figure 2¢) can play in models of transient behaviour prior to
establishment of (nominally) steady detonations. Extrapolation of some recent
studies of essentially unsteady events to the present situation of steady (mostly)
supersonic flows will be outlined in §11 below.

The Rayleigh line %, in figure 2¢ represents a plane wave that is travelling into
unburnt material at subsonic speed (u,, < ay). The final point Ej represents a
situation at the downstream end of the reaction wave, with completely burnt
material emerging, still travelling at subsonic speed relative to the wave itself, at
rather reduced pressure. It is important to note that the B-to-E, transition in figure
2¢ can be interpreted in precisely this same way, with B now acting in place of O as
‘origin’. It is becoming common to refer to reaction waves such as OE or BE, as
fast flames (Clarke 1989a). Whilst agreement on terminology is even more difficult
to reach than agreement on scientific relevance amongst combustion scientists the
designation fast flame for a subsonic-to-subsonic exothermic reaction wave such as
OEj will be used from now on in this article.

In passing it is worth remarking that the constant-pressure transition O-to-F on
figure 2c¢ is an acceptable approximation to the change in specific volume, and hence
normal flow speed, across a Bunsen-burner type of premixed flame (Williams 1985).
However, the change from O to F does not take place along %, for these very low-

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
a\

y 9

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

176 J. F. Clarke

shock

Uy -

:\, (6]

- datum,0=0

Figure 3. Notation for an oblique shock.

speed waves (typically u,, &~ 107%a,,), since their structure is controlled by diffusion
and heat-conduction effects and these are explicitly excluded from the present
article. Fast flames are essentially uninfluenced by any diffusive effects.

Curved waves

The limitation to a purely plane, one-dimensional, geometry in the previous
section on the extension of the definition of Hugoniot curves is severe but it is clear,
on physical grounds at least, that the exact solutions from this special case are
applicable, locally, as an approximation to two and three-dimensional flows provided
that the radii of curvature of #-wave and the streamlines downstream of & are very
large multiples of the reaction-zone thickness; the latter is roughly %I (cf. §2). The
dependence of / on pressure (p/ & const.) means that the idea of a shock-wave as a
locally isolated and complete transition from one equilibrium condition to another
(cf. figure 2a) is more likely to be encountered low down in the atmosphere, where
pressures are highest, for given flow temperatures.

In general, of course, &-waves are curved and the reaction zones behind them are
then relatively complex in their interaction with the downstream flow. Curved &-
waves mean changes in mass flux m from place to place along the discontinuity
surface, and (6.3) shows that variations of entropy s behind the shock will result. The
consequences will be discussed in §9 below, after some more general results have been
established for the behaviour of reacting flows.

7. Oblique shocks

Referring to figure 3 it can be seen that if ¢, is the angle between the stream ahead
of a discontinuity &% and [6] is the jump in the flow angle measured from some
suitable datum line in the plane of u, and , then

tan (p, —[60]) M=&EI+M.

tan g, Upy Uy V1 7

The second relation follows from the continuity requirement (5.6) and it should be
noted that all angles are acute, measured positive in the anti-clockwise direction
from stream to shock . Since

m = py Uy = py Vysing, = p, V,sin @, (7.2)
Phil. Trans. R. Soc. Lond. A (1991)
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(6.1) shows that wl/v, = —[pl/p, Visin2e,, (7.3)
whence (7.1) and (7.3) can be used to show that

tan [0] = coty[p](p, Vi—[p]) 7" (7.4)

Recalling that intrinsic energy e is formally, and quite generally, a function of p,
v and the sets of ¢, values, the # -relation from (6.3) can be used, together with (7.3),
to write

2e(p, +[pl, v;— [P (py Vysing;) 2, ¢,y) } (15)
=0 :

—2e(py, vy, ¢,q) — 20, + [ 2D [P] (01 i Sm‘pl)

After some decision is made about the way in which ¢, relates to the upstream values
.1, it can be seen that (7.5) is a relation that will give values for [p] for given
upstream ( ); conditions including the &-wave angle @;. The associated flow-
deflection angle [6] will follow from (7.4).

If e does not depend upon ¢, and is, furthermore, simply proportional to the
product pv, (7.5) reduces to the familiar direct expression for [p], namely,

[p)/py = (2v/(y+ 1)) [M]sin*p, — 1], (7.6)
where M2=Vi/a3; ai=yp,v,
andy (=X /(A ; of. (6.4)) is the (implied) constant ratio of specific heats; in such

circumstances a, is the unique speed of sound ahead of .

When the gas is real, in the special sense that explicit account must be taken of the
changes in ¢, across &, the situation is evidently much less simple. It is clear that an
important parameter in any relation between @, and [p]/p, will be

P Visin®g,/p,,

but [c,] will also play a role, as may the actual ( ), conditions themselves.

Returning to (7.6) for a moment, it is clear that [p] > 0 only if M, sing, > 1; in
other words & will be a compression shock only if its speed of normal propagation
into the gas ahead of the wave is supersonic. The arguments in favour of [p] > 0 as
the only acceptable & -solution for inert flows, and forbidding solutions [p] < 0, are
well known and can be put in two ways: (i) thermodynamic, based on the Second
Law, exemplified by Hayes (1960), who made use of the thermodynamical character
of the relevant #-curve; (ii) mechanical, exemplified by the discussions of wave-
structure that can be found in the book by Whitham (1974).

8. Continuous solutions

When the basic variables p, p, e, u, and ¢, are continuous Gauss’ theorem applied
0 (4.1)—(4.5) leads to the set of differential equations

V- (pu) = 0, (8.1)

V- (puu)+Vp =0, (8.2)
V:(puhy) =0, hy=nh+3u u, (8.3), (8.4)
V-(pc,u)=K,, a=1,2,...,N. (8.5)

These equations are in so-called divergence or conservation form, which can be
helpful if it is intended to solve them by numerical finite-difference methods. The
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source terms in (8.5) must, of course, be continuous functions of the physical
variables; their presence signifies the most immediately apparent difference between
the flow of either inert or fully-equilibrated mixtures and chemically-active gases.
As explained in §3 each and every K, can be expressed as a quotient, in which the
numerator is expressive of a difference between actual local conditions and some
chosen local equilibrium conditions whilst the denominator, having the dimensions
of time, indicates the rapidity with which such departures from equilibrium may be
reduced to zero (cf. {,;.,, in §2) if the local system is isolated from outside influences.
If the K, tend to vanish because their respective, (f,,.m)-like, timescales are
arbitrarily large relative to local flow times (in other words, if the relevant
Damkohler number &2 — 0, cf. (2.6)) then the species equations (8.5) with the aid of
(8.1), reduce to the statements
u-Ve, = 0. (8.6)

Thus the ¢, will not change along streamlines and, in this particular sense, the flow
will be inert or frozen. If the ¢ ., values or, more properly, the reciprocal of local
Damkdéhler numbers, approach zero the numerators must do likewise in order to
preserve the finite character of K. Chemical and/or relaxational responses are then
fast enough for the flow to proceed through a continuous sequence of states of local
equilibrium. The differential equations (8.5) are replaced by algebraic relations that
are derived by equating the numerator in K, to zero; rates of change of ¢, = ¢, along
streamlines can eventually be found from the values of u*Vc,, if they should be
required.

The task of solving the complete set of equations (8.1)—(8.5) is greatly reduced for
both inert and equilibrium flows by virtue of the consequent simplifications in (8.5).
However, even these solutions are not wholly straightforward, especially for
equilibrium flows where the relatively complicated ways in which the c ., depend
upon p and v, for example, invariably make A, (p,v) an awkward function; this
usually presents insuperable obstacles to progress by purely analytical means and
can also pose some problems for modern computational numerical methods.

aeq

Natural coordinates and characteristics

The vector notation in (8.1)—(8.5) has the merit of brevity but it is often more
instructive to write out the various operations in those equations in full for some
chosen coordinate system. One such especially instructive system for planar two-
dimensional flows is the orthogonal curvilinear net made up of streamlines and
normals that is sometimes called the natural system of coordinates. A similar remark
applies to axially symmetric flows but they are left as an exercise for the reader (or
see Emanuel 1986, ch. 13).

Write the differential increments of displacement along streamlines and normals as
o, d§,; and o, d§,, respectively, so that the o, (n = 1, 2) are scale factors. Then (8.1),
(8.2) and (8.3) become, respectively,

pVa, = m(Ey), (8.7)
PVV +pg, =0, (8.8)
pVE(1/0y) b, +(1/0y) p, = 0, (8.9)
h+4V? = H(E,). (8.10)

The functions m(&,) and H(&,) are functions of integration of (8.1) and (8.3), which
Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

a
\
\
8 \
i

//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Chemical reactions in high-speed flows 179

reduce to statements that pVo, and h, do not vary with £, ; V is the magnitude of the
velocity vector (identical with |u|, of course) and 6 is the flow-deflection angle
measured from some datum-direction, often the free-stream.

The species equations (8.5) become

pVey =0, K, (8.11)

Conservation relations, (8.7)—(8.11), must be augmented by some purely geometric
information about the way in which the scale factors o, depend upon local flow
geometry, namely

Oy, = 0, D, (8.12)

0-1§2 = "0’2 "9’51. (8.13)

Any attempt to solve the equations in a streamline-and-normal system must
recognize, implicitly or explicitly, that o, and o, are two more dependent variables.
This situation is often implicit (cf. Liepmann & Roshko 1957, §7.9) in the sense that
a,dg, and o,d§, are written as differential increments of length, such as dS and dN
for example; in this article the fact is exhibited explicitly, for purposes that will
appear in a section to follow that outlines a numerical computational method.

If (8.7) and (8.10) are differentiated with respect to &, the results can be combined
with (8.8) to show that

1 1 1
2_1)— 2__ = J— 1
(M )01p€‘+p.V 0_27952 Ko,l’ (8.14)
N-1
where = —{V—gl—} > (8_h) K,
paf ep a=1 aca D, psCy
= e
P\w),.
M, =7V/a,.

The local frozen sound speed a; is defined in §3, and M; is evidently the local Mach
number based on this particular limiting value of the continuum of possible signal

speeds.
Defining the frozen Mach angle u; via
Msinpu; =1 (8.15)
combination of (8.9) and (8.14) leads to the results
cot yy(dp/dg,) £ pV3(dd/dE,) = K tan g, (8.16)
d . 0 (cr ) 0
where the operators — = _—+tanu, [ ]|— 8.17
P a -~ o5\, (G40
define two families of characteristic lines, y, = const. or y, = const., such that
ﬁ(a—gﬁ) = +tan (8.18)
! agl X, r - .

It is clear from (8.8) or (8.10) and particularly from (8.11), for example, that
streamlines are also characteristics of the system. Provided that the flow is
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Mach line
X =const.

streamline

&

Mach line™ x,=const.
Figure 4. Streamline and normal (orthogonal curvilinear) coordinate system and characteristics.

supersonic, in the strict sense that M; > 1 (cf. (8.15)), it can be seen that the network
of frozen Mach lines is also characteristic. In such circumstances the flow equations
are totally hyperbolic. Figure 4 illustrates the disposition of the various characteristic
and coordinate lines.

Similitudes and natural coordinates

One of the great facilitators of calculation in planar supersonic or hypersonic flows
of inert gases is the existence of similarity solutions of equations like those in the
previous subsection. These simple-wave flows (cf. Courant & Friedrichs 1948) are
usually derived in the context of cartesian geometries but, for present and
subsequent purposes, it is interesting to enquire briefly how investigation of such
similitudes might proceed in the natural orthogonal curvilinear coordinates of this
section.

The question is therefore posed; ‘Are there solutions for all of p, p, 8, V, o, and o,
that can be expressed as functions of the single variable % ?’, where

N =E/E. (8.19)

The origin for §; , can be chosen anywhere within the field of flow, so the arguments
that follow are quite general.
For any variable f = f(y) it follows that

G _[_ 40 }ﬂ 1

dz, { 77-1_-0_2 tan u, & (8.20)
The factor £, can only be cancelled from (8.16) if K tan x4, is equal to a function of y
divided by &, which in general it plainly is not, or if [ vanishes identically. The latter
implies that each and every K, must vanish; in other words the flow must be
chemically inert. (For brevity the equilibrium situation ¢, = ¢,,,, which also admits
similitudes, is omitted here. It is instructive to see how matters turn out when
o, K, = pVic,,/0 in KK, but the details are left for the reader to pursue for him
or herself.)

It must be concluded that similitude solutions, or simple waves, do not exist in
flows with finite-rate reactions in them. This result actually extends to situations
within which source terms of any kind are operative.

It is worth noting, however, that if K does vanish then all of p, p, 6, V, o, and o,
can be constant on lines of constant £, /£, for plane steady supersonic or hypersonic
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Chemical reactions in high-speed flows 181

flows. The similitude forms of the two equations (8.16) can now be seen, with the aid
of (8.20), to be satisfied in a non-trivial way (i.e. p and 6 not constant everywhere in
some finite neighbourhood) by making

7 =+ (0,/0,) tan (8.21)
and cot uy dp/dyF pVido/dy = 0, (8.22)

where, as usual, it is necessary to take either upper or lower signs together in the
equations.

Comparison of (8.18) with (8.21) shows that in the circumstances lines 7 = const.
are characteristics (frozen Mach lines) and, furthermore, that they are straight lines
in the £,,£,-plane. It will shortly be seen how these various facts can be turned to
advantage in the treatment of some reacting flows.

In simple ideal gases the quantity (cotu,/pV?) dp is integrable; it is called the
Prandtl-Meyer function and is usually quoted in terms of local Mach number and a
(constant) ratio of specific heats (Liepmann & Roshko 1957, §4.10). The more
complex thermodynamical relationships that are necessary to account for flow
behaviour at very high temperature levels are usually such as to make it impossible
to achieve this kind of an analytical result.

Whatever may be the case, a particular solution from (8.21) and (8.22) can consist
of a ‘fan’ of characteristics # = const. that spring from a single point. Such a solution
must represent a wave of expansion, or rarefaction for any fluid element that travels
through the wave along a streamline £, = const. These will be called #-waves from
now on.

A numerical computational method

It is evident that the presence of source terms in the conservation equations leads
to difficulties with their solution. Analytical solutions are out of the question and
approximate analytical theories are of rather limited practical, as opposed to
pedagogical, value. A fairly full account of small-disturbance theories was given by
the writer some years ago (Clarke 1969) and one or two more recent, and quite
different, efforts in the field of analytical-approximate theories have recently been
made by Mughal (1989).

A numerical method, that is somewhat outside the mainstream of current
computational studies, that makes use of some of the results that have been
presented here so far, and is capable of producing some useful results for finite-rate
chemistry in planar steady two-dimensional supersonic (M; > 1) flows, is based, first
and foremost, on the idea of ‘operator splitting’ (see, for example, Strang 1968).

Representing the conservation equations symbolically as

NU=S,

where U is a vector of conserved quantities, N is a nonlinear differential operator and
S is the vector of algebraic source terms, a finite-difference solution is constructed in
steps, as follows. First solve what can be called the wave problem NU,, = 0 in a small
element of £, £, space to find a solution U,, with ¢, = const. along streamlines and
then use U, to help set up and subsequently solve a simpler source problem
N, U= S with which to up-date and correct U, for the effects of chemical
action. In the natural coordinate system operator N is clearly best limited to
differentiations in the streamline direction &, thus taking full advantage of the
simple character of (8.11). Solutions march downstream in the §, direction and, of
course, it is necessary to include o, 0, in the collection of dependent variables.
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Figure 5. A Riemann problem in &, £, space. Data on £, = §,, is piecewise constant and gives rise
to a solution that consists of waves %, (m =1 (a) or r (¢)) that may be shocks % or rarefactions
R; (b) W, is always a contact discontinuity €.

Solution of the wave-problem can exploit the information about slip surfaces €
(§5), plane oblique shocks & (§7) and similitude solutions in §,, §,-space (see above)
to deal with discretized data, along a §,-normal in the flow, as a sequence of
Riemann-type problems in the natural coordinate space. Briefly the procedure is as
follows. Consider a small region in §,, £, space ; assume that pressure p, and flow angle
0,, etc., are uniformly constant in §, > £,, (see figure 5) and, in general, different from
similarly constant values in §, < &,,. The solution of this initial-value problem will
consist of three centred waves, #, #, and ¥, as depicted in figure 5. Any wave ¥/ ,
that is not & behaves like the Z-waves described above; ¥, will always be a slip-
surface € and will always lie along §, = &,,.

The Riemann problem is to find ¥ , such that [p] = 0 = [0] at ¥

If 6 jumps or changes by an amount [0], , across ¥/, ,, respectively, the condition
[6] = 0 across #,: % is just

, 1

0,+10],=0,+10],
or [01,—[6], = (6,—0,) = Ab. (8.23)

Condition [p] = 0 at #/,: € is met by making the pressure downstream of ¥, and ¥,
equal to p*, as implied in figure 5.

If a relation between [0], , and [p], , can be found that involves only given
conditions on §, = §,, it is clear that (8.23) provides a relation from which p* can be
calculated. When this is done the Riemann problem is solved.

Referring to §7, note first that the subscript-1 states will be either { or r states in
figure 5. First select ¢,, = ¢,; in (7.5) (note that ¢, will normally not be the same in
! and r states); choice of [p] in (7.5) will give sin #, whence, with f, necessarily an
acute angle, (7.4) will give the associated [0], and the requisite [0], , against [p], ,
relations therefore exist for &-waves.

The centred expansion waves described by (8.22) are isentropic when ¢, is fixed, so
that these equations give the #Z-wave [p], [0] relation via

D+ D]y
f (cot ue/pV? 0o, pt[0], =0, m=1r, (8.24)
Pm

where 0, p signifies integration with respect to pressure p at fixed entropy s. The fact
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Figure 6. Some results for the flow of an ideal dissociating gas (Lighthill 1957) past a wedge with
an attached shock calculated by the methods outlined in §8. The frozen Mach number of the
undissociated free-stream is 32 and the shock-wave angle g, (cf. figure 3) at the apex of the wedge
is 30°. Curves 1-5 in the figures show variations of (a) density, (b) pressure, (c) mass fraction and
(d) entropy with ‘distance’ measured along each one of five streamlines; curves 1 apply to a
streamline just above the surface of the wedge, while 2, 3, 4 and 5 show variations along streamlines
above the surface that are situated so as to enclose similar increments of mass-flux between
adjacent pairs. Dotted lines E, F denote wholly-equilibrium and wholly-frozen flow conditions. The
existence of a layer adjacent to the surface across which entropy, composition and density all vary
significantly, is evident.

that one needs to know e as a function of p, v and the ¢, in order to solve the ¥-wave
problem, and e or k as a function of p, s and the ¢, does not make matters any easier,
even in the context of the present, simpler, ‘split’ problem. However there is no
serious obstacle in the way of progress via numerical computation and figure 6
depicts some results that have been obtained by A.S.Dawes (personal com-
munication) using the techniques whose broad character has been outlined above.
Computation in a natural coordinate system had advantages in the specification
of boundary-conditions (e.g. 6 = 0,(§,) on £, = 0), and the obvious location of slip
surfaces . The clear-cut character of operator-splitting for reacting flows is also
attractive and, apart from the work by Dawes, has not been exploited to date.
There is quite a range of choice for the way in which solutions of individual
Riemann problems can be used to provide data at the ‘new’ £ -value; for example,

Phil. Trans. R. Soc. Lond. A (1991)
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184 J. F. Clarke

random choice (the method used by Dawes), weighted-average flux (Toro 1989),
etc., but this is not the place to go into such detail and, in any case, developments
are taking place at such great speed in the whole field of computational studies that
any value-judgement is likely to be superceded by another before it appears in print.

The disadvantage of the numerical method that has just been described is, plainly,
its restriction to supersonic (M; > 1) flows. As a result blunt bodies cannot be treated
by this technique, but it is possible to acquire some useful information about the
influence of finite-rate chemistry on such things as trailing-edge controls and engine-
inlets, which are situated at the downstream end of quite long runs of predominantly
supersonic reacting flow, and rather distant from the patches of subsonic flow that
exist in the neighbourhood of stagnation points or lines at leading edges.

9. Vorticity

A further feature of hypersonic flows with finite-rate chemical change, that is
implicit in various parts of the text so far, but which must now be made explicit, is
their association with vorticity. Euler models of any steady flow behaviour must
obey the momentum equations

u'Vu={Vu u)—uxw=—uvvp, (9.1)

where @ = V x u is the vorticity. Taking the vector curl of the second version of this
relation shows that
u'Vo—o-Vut+oV-u)=—-VuxVp. (9.2)

Since mass-conservation requires V- (pu) to vanish, (9.2) leads directly to the result
(NB v =1/p)
D(vw)/Dt = vor-Vu—uvVuv x Vp, (9.3)

where D(vw)/Dt is the rate of change of ve following the motion of a material point,
namely u#-V(vw) in a steady flow.

The first term on the right-hand side of (9.3) describes the local instantaneous
spatial rate of change of the flow-velocity vector in the direction of the vortex line,
so that ve for a fluid particle changes as a result of the action of such instantaneous
local strain rates. The twisting and stretching of a vortex line that is described by the
term v - Vu is only active in three-dimensional flows since the term vanishes in plane
flow.

The fact that an infinitesimal line-element d/ that is made up of material points
obeys the relation D(dl)/Dt = dI-Vu can be used to prove that vortex lines follow
material points, and therefore move with the fluid, but only when Vv x Vp vanishes
from (9.3) (Batchelor 1967, pp. 131-132; Whitham 1963, pp. 121-124). In addition
to the case of incompressible flow, for which Vv = 0, Vv x Vp will also vanish when
the two gradient vectors are colinear, which is what happens when p is a function of
v only. There are many situations in the flow of compressible fluids for which
p = p(v) is either true or sufficiently nearly so to make Vv x Vp =0 an acceptable
approximation. However, these situations demand that the flow shall be both
homentropic (Vs = 0) and of fixed chemical composition (V¢, =0V a) and, on the
whole, neither of these conditions is satisfied in a hypersonic flow, as will now be
demonstrated.
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Chemical reactions in high-speed flows 185

Expressing v as a function of pressure p, entropy s, and chemical composition c,,
it is clear that

N

v v v
Vv = (@)syca V])‘}‘(ég)pyc V8+ Z (5(:—)1)’8’ cﬂVca. (94:)

% a=1 a.

It follows from (3.9) and equations (8.1), (8.2) and (8.3), which can be combined to
give
uVh—ou-Vp =0,

N
that pTuVs =— 3 pn, K, (9.5)
a=1
where (8.4) has been used to eliminate u-Vc,. The right-hand side of (9.5) must be
positive, unless the flow is either frozen or in a state of permanent equilibrium, when
it will vanish. Such a thing is obvious from the Second Law of Thermodynamics and
the fact that reactions are natural processes; a demonstration of the validity of the
statement, that sheds some additional light on the relationships between u, and K,
can be found in §1.14 of C & M.

Therefore, in those parts of the flow field for which the variables are continuous,
(9.5) shows that entropy is continuously created by chemical activity within any
fluid element as it moves along its streamline. As a consequence Vs is unlikely to
vanish anywhere within the field; the same must be true for Vc,.

Thus Vv x Vp does not vanish and (9.3) show that vorticity is continuously created
or destroyed, depending on the sign of Vv x Vp, in any given element of the gas
mixture, whether the motion be two dimensional or three dimensional.

In any flow field for which shocks appear, which in essence means all hypersonic
flows, it is crucial to recall that entropy increases across &-waves by amounts that
change with variations in the normal mass flux m (see (6.3)). As a result a very
important contribution to Vs is associated with curved shock waves &, that is to say,
with one of the discontinuous features of solutions of the Euler equations. It can be
demonstrated (as in §10 below) that chemical activity downstream of a shock wave
will lead to curvature of that wave, regardless of any part that may be played by the
geometric effects of body shape. The latter will be experienced in the flow around
hypersonic vehicles when leading edges of the vehicle are made blunt to avoid
excessive local heat transfer rates.

The question of shock shape and vorticity will be taken up again shortly, after
another important relation between vorticity and flow-field features has been
described.

Crocco’s Theorem. Rewriting (9.1) as
uxo=vVp+iV(u u),
(3.9) can be used to show that

N
uxw=—"TVs+V(h+iu-u)— 3 u,Ve,. (9.6)
a=1
This last relation is a general form of what is usually referred to as Crocco’s Theorem
or Law. In the present context, the direct contributions arising from chemical change
are noteworthy ; their additional strong connections with Vs will be described a little
more thoroughly in due course.
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Tigure 7. Distance 4 measured along a curved shock wave and other notation.
(@) & : shock wave.

When the flow is steady it has already been remarked in §8 that stagnation
enthalpy A+3u-u = h, does not vary along a streamline. It is also usually the case,
certainly for theoretical models of flight in the atmosphere, that A, is presumed to
have the same value on every streamline. As a result (9.6) simplifies to

N
uxow=—1TVs— 3% u,Ve,, (9.7)
a=1
which reinforces the very direct nature of the connection between entropy and
composition gradients and local vorticity values.

Vorticity and curved frozen shocks

It is simplest to consider the relation between vorticity and curved #-shocks in the
natural coordinate system introduced in §8. An immediate consequence of the
restriction to plane flows is that (9.5) and (9.7) combine to give

Y L

: agz a=1 *

where { is the sole surviving component of V x u. In other words, only gradients of

entropy and composition that are normal to streamlines are significant for the

existence of vorticity.

The result in (9.8) is only valid in the continuous parts of the flow, but these include

the regions immediately upstream and downstream of a discontinuous -wave. It
can be seen from figure 7 that combination of (3.7) and (9.8) gives

sing, V, § = —{0h,/04 —v,0p,/04},

for the flow immediately downstream of %, where ¢, in the local acute angle between
& and the streamline, and 4 is distance measured along & . Since the shock is curved,
@, will vary with 4.

Using the relations from (6.1) and (6.2) to write

hy = hy—gm*(v—r?)

oc

a_g:’ (9.8)

it can be shown, after some elementary manipulations, that

. , . 0 0 . 0
sing, 136, = sing, K& —0){ Lt S o 22 (9.9)

This relation gives the vorticity ¢, downstream of a curved shock in terms of the
vorticity ¢, and the state of the flow upstream of the shock, together with its shape
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Chemical reactions in high-speed flows 187

(specifically @, against 4, since ¢, is derivable from a knowledge of the subseript-1
conditions, as shown in §7).

Conditions ahead of a shock-wave are not necessarily either uniform or irrotational,
but if they are (9.9) reduces to the statement that

_ _Pm dm _ (1—r)? o,
& = 7, sing, 94 |4 COSPr 1 (9.10)

The last result here follows from results that can be found in §7; » is written for the
density ratio
T= /Py = 0/vy; (0<r<1). (9.11)

The last version of (9.10) can be recognized as the frequently quoted result from
Hayes & Probstein (1966, equation (1.5.12)), that makes the attractively direct
connection between §, vorticity and shock curvature dp,/04.

The atmosphere into which a hypersonic vehicle travels is usually uniform and
irrotational in character, so that (9.10) applies to the front or bow shock-waves in
such a case. Furthermore r is often less than 107! in magnitude; the factor (1 —r)%!
is therefore large and &-wave generation of vorticity is rather effective for bow
shocks.

Re-writing (9.9) in light of (7.2) and definition (9.11) shows that

1 1 1 —7r\?

§2=;§1+<;—1){%%%+m%}+(¥)Gl%;ﬁ). 9.12)
This result will apply in most practical hypersonic circumstances to curved shock-
waves that appear in the disturbed flow field downstream of a strong bow wave.
These shocks will therefore be weaker, and r consequently nearer to unity, than in
the case of the bow wave. It is interesting to see, from the first term in (9.12), how
simple compression will amplify vorticity (cf. (9.3)). Comparison of the last term in
(9.12) with the result in (9.10) is also instructive.

10. Shocks and associated chemical activity

Nothing has yet been said in any detail about the way in which chemical activity
develops from the point where it is initiated or, perhaps, strongly perturbed, by the
appearance of an &-wave, except for some assertions about the general nature of
transitions B-to-E in the early parts of §6 (cf. figure 2 in particular). Even these few
remarks are, strictly, limited to plane waves which, of course, constitute a very
special case and may not generally be encountered in hypersonic flow fields. This
section will attempt to describe in more detail how chemical changes proceed in, and
interact with, flow downstream of #-waves, starting with the simplest case of a
normal shock.

Normal shock in a simple dissociating gas

It has already been remarked in §6 that no acceptably accurate approximate
solution exists, even for the simplest case of a single dissociation reaction that is
initiated by a plane &-wave in a pure homonuclear diatomic species. This state of
affairs has been put right recently by Birkhan et al. (1988) and a brief account of their
method will be given shortly. It should be remarked that the work of Birkhan et al.
assumed that density is constant in a mixture consisting of heteronuclear molecules
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AB, plus the separate A and B atoms. At the initial instant of time these authors
assume that temperature is suitably high, with all A and B atoms absent;
dissociation of AB proceeds immediately from the chosen initial conditions. The
process is therefore one of temporal evolution in a system that is spatially uniform.
The method is readily adaptable to present needs, which are for an account of spatial
development in a steady state downstream of a plane &-wave. Some simplification
is afforded by treating dissociation and recombination in a homonuclear molecule A,.
Equation (8.11) can then be written in the form

ce, = (0,/7q V){[L—c]—c*(p/pq) exp (¥4/T)}, (10.1)

where ¢ is atom mass fraction and where 94, p, and 74 are thermodynamical and
chemical kinetic parameters or variables for the specific mixture of A, molecules and
A atoms, defined as follows. Note that (o,/V7,) is the local Damkdohler number.

If D is the energy required to dissociate unit mass of molecules at the absolute zero
of temperature, and W, is the molecular weight of the molecules,

P4 = DW,/R; (10.2)

Paq is a characteristic dissociation density, a weak function of temperature that is
assumed to be constant in Lighthill’s (1957) model of an ideal dissociating gas.
Typical values of ¥, and p, are those for oxygen, namely 5.9x10*K and
1.5 x 10° kg m~3; the ratio of p, to p, the density in a typical flow field, is large and
lies between 10° and 107, as a rough guide, for many applications. The group of terms
(p/pq) exp (94/T) can therefore take values around unity for temperatures measured
in units of 10® K and, as can be seen from (10.1), equilibrium values of ¢ will do the
same.
The chemical (specifically in this case dissociation) time 7, is given by

1/7, = Qexp (—94/T). (10.3)

The pre-exponential factor £ has a magnitude that is about the same as the
frequency of intermolecular collisions. The exponential factor in (10.3) acknowledges,
in the manner of Arrhenius, that there is an activation energy for the dissociation
reaction that is in this case equal to the dissociation energy itself. By comparison
with the exponential, £2 is a weak function of temperature but it does also depend
upon density or pressure, being proportional to p for example.

Clearly (10.1) involves V, T and p as well as c¢; it can be seen from equations such
as (8.7), (8.8) and (8.10), specialized to apply to the present plane-flow situation
(namely o,, m and H equal to constants) that relatively simple linear relations exist
between all of these quantities but, even so, (10.1) is still impossible to solve
analytically in view of its strong nonlinearity.

It will be assumed that the atmosphere ahead of & is cold, undissociated, A, and
that its speed of flow into & is hypersonic; & converts the majority of the kinetic
energy in the cold stream into thermal energy and, in present circumstances, it
suffices to treat the flow behind & as one of constant enthalpy (i.e. ignore V2 relative
to A in (8.10)). In the same spirit of providing a rough sketch rather than a detailed
picture of events downstream of &, assume that 4 is given simply by O, 7'+cD,
where (| is a constant; the energy equation then reduces to the statement that

I'T+c9, =~ I, I'=C,W,/R, (10.4)
where 7T, is the value of 7" at point B (figure 2a) since ¢ is zero there.
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Chemical reactions in high-speed flows 189
Now re-arrange (10.1) together with (10.4) to give an equation for J;

*>=T/T,, (10.5)
as follows:

d9/dt = —eexp (1/e(1— (1/9)) ({1 — el (1—9)] —e*B, exp (1/e((1/9)
—(1/9) T(1=9)3,  (10.6)

where Pe = (p/pa)exp (1/€d), (10.7)
e=1T,/%, (10.8)
131 o, Q
b e e oxn(—1 ( L )d 10.9
e 2exp(—1/e) L VT & ( )

and &, (=1,/1}) gives the final, equilibrium, values of & at which all further chemical
activity ceases, calculated from the transcendental expression (cf. { } = 0 in (10.6))

1—el(1—9,) = 2B,(I(1—9,)), (10.10)

where g, will take values in the neighbourhood of unity. The various quantities, in
particular ¢ in (10.9), have been defined so as to make d9/dt equal to —1 at the initial
‘instant’ t = 0, where ¢ (=9(¢;¢€)), is such that

$(0;e) = 1. (10.11)

The parameter ¢ in (10.8) is moderately small, of order 107!, and the idea that was
exploited by Birkhan et al. and derived from work in combustion theory (reviewed by
Williams 1985), is to seek asymptotic solutions for & in the limit as e - 0 with, in the
first instance at least, ¢ fixed. This process is expedited by using a nonlinear
coordinate transformation due to Kassoy (1975), which in the present situation can
be written as

A=c¢ln(1+9¢) (10.12)

with &~ (L+2) 4D (8). (10.13)
For any & —9,> O(¢) the final, recombination, term in (10.6) is negligible and
substitution of (10.12), (10.13) into (10.6) produces the result

9V =—2(14+A)2In(1+A) (10.14)

via the most elementary manipulations.

When & —9, is O(¢) the recombination term in (10.6) is no longer negligible;
dissociation has proceeded, very rapidly at first, and then at a diminishing rate, until
the atom concentration begins to approach its local equilibrium value. In such
circumstances, defining { via

e =1+A-9.1, (10.15)
allows one to show that
HV = (1+2)2In{(1+A)"2+e} (10.16)
when ¢ = O(1). In other words
P ~ Pt ediln (1+92e7%) (10.17)

under these circumstances.
Figure 8 illustrates these results (in particular (10.13) combined with (10.14), and
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Figure 8. Temperature against coordinate ¢ (see (10.9)) behind a strong normal shock in a
dissociating gas. The final equilibrium value of #is &, (= 0.5 in the present case); ¢, defined in (10.8),
is 1071, (a) Recombination included, (b) no recombination, (¢) 2exp{(1/d,—1)/e}. & = T/1,,.

(10.17)) for some typical conditions, and makes two important features of the
chemical behaviour downstream of a strong shock quite clear. The first feature is the
extremely rapid rate of fall of temperature as the virtually unchecked processes of
dissociation take energy out of the flow to break chemical bonds; the second is the
comparatively slow and spatially protracted progress towards final chemical
equilibrium. Of course ¢ is a nonlinearly stretched spatial coordinate ; o, may be given
a constant value without loss of generality, but £ and V both change in the
relaxation zone behind . However, such changes are not dramatic and figure 8 can
be interpreted roughly as a qualitative picture of the spatial variation of 7' or ¥.

The implicit limitation of the method, as described above, to small-order ¢ values
of ¢ should be remarked upon. More details and numerical values for their particular
example are described by Birkhan et al. The method should be capable of development
into more complex and accurate situations than the one outlined above ; certainly the
acquisition of an asymptotic solution, with the usual strong links that these solutions
make with essential physical behaviour, is very useful in a teaching context.

Oblique plane waves

Although the treatment in the foregoing subsection is brief it is, hopefully, clear
that a satisfactorily complete summary of the endothermic reaction domain
downstream of, and normal to, & is available. For the very strong waves that have
been examined it has been found that 7' diminishes monotonically from its value at
B (cf. figure 2a) to its final equilibrium value at E, whilst ¢ increases monotonically.
This has been demonstrated for the simplest reaction scheme. One thing that figure
2a suggests is that pressure p and density p (=1/v) also increase monotonically in
the reaction zone from B to E; since the figure applies to much more general
circumstances than those of a single reaction and reactant, the conclusion about the
behaviour of p and p is likewise more general than the previous statements about 7'
and c.

As p increases in the reaction, or relaxation, region the flow velocity normal to &%
must diminish. Addition of a fixed component of velocity that is parallel to & (cf.
(5.6), for example) to the whole flow pattern now provides a solution for the flow
through a plane oblique shock and its associated plane reaction zone. The situation
is illustrated in figure 9. The flow is instantaneously deflected through shock % by
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Chemical reactions in high-speed flows 191

Figure 9. Streamline through a plane oblique shock-plus-reaction zone.
(a) Effective end of the relaxation zone (cf. figure 8).

Figure 10. The effect of a simple wedge, of opening-angle [¢],,, on shock & attached to the apex;
the flow is one with finite-rate chemistry. (a) Effective end of the relaxation zone, (b) zone of
vorticity created by the curved shock k, continuously, by chemical reactions.

an amount [#], and then undergoes additional deflection in the relaxation zone to
reach a final value (6], > [6],.

It is possible to imagine that &% springs directly from a sharp concave corner in an
initially flat wall, but it is quite clear that the wall angle must then change, increase
in fact, in order for it to support the plane oblique wave sketched in figure 9. The
actual length scale of the reaction zone depends upon factors such as 2, V and ¢, as
indicated in the previous subsection ; therefore the same shape of solid body will not
produce the same flow field (specifically, not a simple planar field) under different
atmospheric conditions. Just as the similitude solution for continuous expansive
flows does not appear in a reacting medium (cf. §7), so its compressive counterpart
is of much less significance in the construction of supersonic reacting flow fields.

Plane wedge

The plane wedge shape is a basic artefact of supersonic flows in simple ideal gases
and so it is interesting to find out how a reacting flow will respond to its presence.

Assume that flow downstream of an oblique shock wave is given sufficient space
to reach new states of equilibrium. With a uniform equilibrium flow ahead of the
wedge the picture must be as illustrated in figure 10. The explanation for figure 10
is as follows. Far downstream of the corner the flow must be parallel with the wedge
surface ; 00/0§, must vanish and (8.9) shows that p must be uniform across this whole
region. The total flow deflection angle through the combination of & and its
relaxation zone far above the wedge must therefore be the same as the wedge angle
(0],,; from figure 9 it can be seen that [6], far above the wedge must be equal to (0],
and that shock & out there is therefore weaker than it must be at the nose of the
wedge, as a result of the inequality between [6], and [6],,.

Evidently entropy s will differ from streamline to streamline and the final
equilibrium state will not be one of either uniform chemical composition or flow
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192 J. F. Clarke

velocity (cf. figure 6); it will, of course, be a rotational flow. It is also clear that the
streamlines will not be parallel, one to the other, in the field between shock & and
the new equilibrium state.

Blunt bodies and detached shocks

Any steady supersonic stream that blows towards a blunt body will have to pass
through a more-or-less highly curved shock that stands ahead of the body, as
indicated in figure 11. Evidently the shape of the body has a primary (geometrical)
influence on the shape of &, but one must also remember that the chemical condition
of the gas between % and the body will have a part to play in the shape and location
of the shock, as has just been indicated in the case of the simple wedge.

There is a significant difference between the present configuration and those
examined so far in this section. The only length scale that has mattered so far is the
local chemical scale V74 (see (10.1)), but now the body introduces a specific length
scale of its own, such as the radius of curvature 7, of the body at the stagnation point
S (figure 11).

The distance NS is called the shock stand-off distance. If the flow has no intrinsic
length scale, NS is a fraction of g that depends only upon body shape and free-stream
Mach number M, but for any finite, non-zero, value of V7, this is no longer the
case. For example, suppose that V7, is so small relative to r, everywhere in the
neighbourhood of the stagnation streamline NS that, for all practical purposes, the
flow along that streamline is in chemical equilibrium. As a result (cf. figure 2a) the
density will be larger there than it would be in the opposite situation, for which V4
is assumed to be large enough to make the flow from N to S predominantly one of
fixed or frozen composition. Clearly shock stand-off distance will be smaller when
equilibrium conditions prevail than in the opposite limit, for which composition is
frozen.

It is interesting to observe that the frozen-flow limit of large (V7,/r,) cannot apply
uniformly along NS since V must become arbitrarily small as the stagnation point S
is approached. Thus, no matter how large 7,/r, may be near S its product with V,
outside the singular case of 7, infinite, must ultimately tend to zero. It is clear from
(10.1) that ¢ must approach an equilibrium value at S under all circumstances, with
the possibility that a small region of near-equilibrium composition may exist in a
near neighbourhood of S, buried within a predominantly fixed-composition shock
layer. This interesting and quite complex topic has been very fully treated by Conti
(1966) and Conti & Van Dyke (1969a, b).

In the plane flow, pressure, density and temperature vary along streamlines in the
following way :

(a; = V?) pg, = pV?ai 60, + V>Qc,, (10.18)
(@i —V?) pg, = pV?260, +Qcy, (10.19)

pay(ai—V?) Ty = (i —1) 6PV20g2_ (1=, M) Qg — (1 —M¢) (Op/0c),, 1 C,-
(10.20)

The notation is that of §8, with the following additions:
oy = (1/v) (dv/0T),, o cg=0,/0, Q= (Ge/0c)yp, ,

The ratio of frozen specific heats is written as y;; y; is not necessarily a constant.

It can now be seen directly that changes of p, p and 7' along streamlines occur for
two fundamental reasons; one is geometric, in the sense that 0€2 # 0 in general, and
the other is chemical since ¢, is likewise not usually zero.
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Chemical reactions in high-speed flows 193

Figure 11. Flow near the stagnation point S of a symmetrical body; NS is stand-off
distance shock <.

The flow downstream of the nearly-normal parts of shock & is subsonic, which
means af > V?in this case; if & itself is strong enough, the even stronger condition
v ME > 1 will apply, and this will certainly be the case for a bow shock & in a
hypersonic stream. If 6, is zero it can be seen that 7; is negative (since ¢, must be
positive behind & prior to a new state of chemical equlhbrlum) which reaffirms what
has already been seen in the section on normal plane shock behaviour.

In regions near NS the term 6 is positive (cf. figure 11), so that the chemically-
induced rates of decrease of 7' are checked by geometric effects as the flow is
decelerated near the stagnation point. Evidently p and p rise monotonically along
streamlines in these regions and even 7' will begin to increase in close proximity
to S.

The magnitude of Ce, will diminish as dissociation proceeds and, in any case, one will
eventually encounter a switch in the sign of 6, as progress is made along a streamline
(see figure 11). The expansive character of the flow that is clearly associated with
05 < 0 (see (10.18)) means that geometric effects will now augment the fall in 7" that
is associated with the progress of dissociation. As a result 74 can increase dramatically
beyond what is called for by chemical action alone (cf. (10.3) and the large activation
energy implicit in ¢4 there). For all practical purposes the chemical reactions then
cease and the expansive flow proceeds, downstream of a thin ‘transition’ layer, in an
effectively frozen condition. That all of this is not mere speculation is amply borne
out by the very enterprising experimental and theoretical work carried out by
Stalker & Hornung and their colleagues (reviewed recently by Hornung (1988)). Of
course, whether or not the thin transition layer occurs in the relatively low-speed
parts of a flow somewhere near a stagnation point depends entirely on the
magnitudes of a local Damkdhler number such as 7,/ V74, but there is no doubt at all
that it can happen.

11. Combustion in high-speed flow

Suppose that a plane shock & exists in a stream of pre-mixed reactants whose
enthalpy A obeys the elementary relation given in (6.4). A very brief account of what
may happen when & is normal to the unburnt cold reactant stream has already been
given in §6 (cf. figure 2¢), where the whole combination of shock plus reaction zone
(or fast flame) has been identified as a ZND detonation wave. Detonation waves, in
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194 J. F. Clarke

which exothermic chemical reactions drive a strong shock which then acts as the
ignition mechanism for the chemical activity, have long been the subject of
experimental and theoretical examination, and many books, review articles and
papers have been written about them. The book by Fickett & Davis (1979) is an
authoritative source of information up to that date, and it is clear that most work
on detonation is provoked by the need to understand how such waves propagate in
gases, liquids and solids. As a result the main body of this work deals with, or at least
implies, time dependence. The possibility of sustained hypersonic flight in the
atmosphere depends upon the provision of a satisfactory propulsion device and, since
detonations travel at supersonic speeds normal to themselves (cf. §6) and so can
maintain a fixed position in a supersonic stream, it is natural to start thinking of
them as essentially steady-state processes for the release of chemical energy within
an engine. Flow speeds need not be matched precisely to the propagation speed of the
detonation, which tends to be very closely tied to the energy released in the chemical
reaction, since the wave can be oblique to the oncoming flow. The combination of
high speeds of normal propagation (e.g. Mach numbers of 3-5) and obliquity make
detonations natural processes for heat addition at hypersonic speeds and fun-
damental work on possible flow configurations was begun many years ago (e.g.
Townend (1970), who first demonstrated the need for detonations to be oblique to
have flexible and efficient ramjet performance).

Of course the need for a pre-mixed stream of reactant gases into which the
detonation can propagate turns the emphasis firmly in the direction of mixing
processes in the hypersonic environment. This crucial topic is not within the scope
of this article, but it is very important to know that mixing can be satisfactorily
achieved in such conditions, although fuel-air ratio may vary widely across the gas
stream, as exemplified in the recent work of Menees et al. (1990).

There is space here for only a very brief outline of the way in which steady-state
exothermic waves may behave in supersonic streams. In essence, what follows is
concerned with the simple spatial structure of such waves in an attempt to bridge the
distance that exists between treatments of exothermic influence in the manner of a
discontinuity (e.g. a jump from O to Ej in figure 2¢ (Townend 1970)) and in the
manner of distributed sources of heat (cf. Broadbent, this Theme).

Normal exothermic wave

Consider the wave whose broad character is indicated in figure 2¢, which consists
of a shock-jump &% from O to B followed by a combustion zone B to E. The
structure of this last zone can only be determined once the nature of the relevant
particular chemical reaction is known. A suitably simple source term that is both
sufficient for present purposes and consistent with the naive thermodynamics
implied by (6.4) is

K, =—pQcexp (—9,/T), (11.1)

where £ is a pre-exponential frequency factor (a weak function of p and 7') and ¢ is
the mass-fraction of the combustible species; 9, is an activation temperature (cf.
(10.2) which defines 4, in terms of activation energy for a dissociation reaction).

Combustion is a process that is noted for its sensitivity to the levels of temperature
in a system. Consistently with the simple modelling of thermodynamics and
chemistry in this article it is convenient, first, to define

¢=1T,/9, (11.2)
Phil. Trans. R. Soc. Lond. A (1991)
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Chemical reactions in high-speed flows 195
and then to affirm the temperature sensitivity just referred to by making
e<1. (11.3)

Immediately downstream of shock &, in other words from point B on the Rayleigh
line &Z, in figure 2¢, conditions develop in such a way that it is proper to write

v =y(1+ey’), Yy=p,p VT (11.4)

The domain in which perturbations of the foregoing quantities from their values
at point B, denoted by p,, etc., are limited to O(e) is described as the induction
domain #.

When flow-deflection angle 0 is constant (e.g. zero) (8.7)—(8.11) can be manipulated
to show that

T,=Texp(T), I'=(1—yMp)/(1-M3), (11.5)

where M, (< 1) is the frozen Mach number of the flow at B and y is related to distance
S measured along a streamline from point B as follows:

eexp (1/e) x = (¢, Q/Cpf T,) (€2y/V3) S. (11.6)
(Note that S is such that dS = o, d, in the notation of §8.) Evidently (11.5) makes
T =—-In(1-TY%) (11.7)

and domain .# concludes with temperature rising like the logarithm of 1 — Iy in the
neighbourhood of ¥ = 1/I" which, in company with (11.6), gives physical scale to the
induction event. Only O(e) fractions of reactant are consumed in £.

Thereafter the combustion process goes through a sequence of diminishing length
scales as temperature increases until all of the remaining reactant is consumed. The
whole situation has been discussed in some detail by Kassoy & Clarke (1985).

It will be helpful in what follows to describe the physically compact domain in
which most of the reactant is consumed, and pressure falls (from just below B to E
in figure 2¢), as the fast-flame domain, or & for short. More information about fast
flames in the context of one-dimensional unsteady events can be found in a paper by
Clarke (1989a).

For practical purposes the reaction zone, made up from .# and &, occupies a layer
whose thickness, perpendicular to &, is of order

(Vo/£20) (Cp T/ e, @) € exp (1/€) /T, (11.8)

It is clear that this length scale can vary over a wide range of values, depending upon
the size of a number of parameters, and that it is entirely possible to find the .# and
& domains comparable in size with geometrically significant parts of a propulsion
device.

The particular detonation wave O to B to Ep in figure 2¢ is a Chapman—Jouguet
(CJ) wave (Ficket & Davis 1979) since Rayleigh line .%,, and hence mass-flux
through the wave (equivalent to propagation speed), is fixed by the relative
disposition of points O and Ey in the plane; as a result the propagation speed of a
CJ detonation is determined entirely by the thermodynamics of the gas mixture and
not at all by chemical rate processes. CJ detonations are the ones that usually appear
in experiments on waves in tubes (Fickett & Davis 1979). It should be noted that
flow-speed at E, in such a wave is exactly (frozen, in the present case) sonic, and that
CJ wave propagation speed, in the present situation, is a lower bound for all
detonation speeds.
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196 J. F. Clarke

Figure 12. A plane oblique detonation wave; . is the shock wave, J is the (relatively long)
induction domain, &% is the (relatively short) fast-flame. Deflection angle [0] diminishes
monotonically from [6], to [6], > 0.

Oblique exothermic waves

By vectorially adding a component of flow velocity that is both parallel to a wave
of the kind that has just been described, and of the same magnitude throughout the
field, a picture such as figure 12, can be constructed. This shows the effect of a plane
oblique detonation on the local streamline pattern. It is axiomatic that the stream
ahead of such a wave must be uniform in all respects.

Flow deflection [0],, through & at point B can be substantial, but further changes
(which must be reductions) of 6 in # are of order e¢. Thereafter, some further and
substantial reductions in 0 take place through & until the final increment from the
pre-shock direction, namely [6],, is achieved at point E, (figure 2¢). Flow deflections
must always obey the inequality

(0], > [014> 0 (11.9)

when & is at a positive acute angle ¢, to the local stream.

With 1} ahead of & well in excess of ay, it is clear that any sudden change in the
direction of a solid surface through an angle [0], will create a shock &, and that the
jump in temperature experienced by reactant on crossing & will switch on
combustion reactions. However, if the surface immediately downstream of B is not
shaped to conform to the streamline shape indicated in figure 12, it is evident that
the combination of &, # and & will not be plane and the wave system therefore
not CJ.

More general combustion wave systems

Suppose that a sharp wedge W with a half-angle [0], is situated in a relatively cold
uniform stream of pre-mixed reactants. The wedge angle is assumed to be small
enough to admit an attached shock & at the apex (figure 13), so that flow
downstream of & will be supersonic. Assume furthermore that, although % need not
be exactly plane, it is not far removed from that condition, so that the sort of
ordering of perturbations in the induction-domain that was described above can be
extended to the initial field downstream of &. It is only necessary to write

0=et (11.10)

in addition to (11.4) to be able to show from (8.7)—(8.11), and after a good deal of
algebra, that

(T, —Te™),,—(T,—e"),, =0, (11.11)
Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

\
A
I \
E S

A

a

//\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A
I\ \\

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Chemical reactions in high-speed flows 197

Figure 13. The effect of a symmetrical sharp wedge situated in a relatively cold high-speed
stream of unburnt reactants (cf. figure 12 for notation).

where I" and y are formally the same as in (11.5) and (11.6). The new coordinate yr
is related to the coordinate N normal to streamlines via

coxp (1/6)y = (¢, @/Cps Ty) (24/ V) (ME—1])PN, (11.12)

where N is such that dN = o,d§, in §8. (Compare (11.12) with (11.6).)

It should be noted that, while ¥, and M, are flow speed and Mach number at point
B both here and in the sub-section on normal exothermic waves, M, < 1 in the latter
situation (in fact y; M2 < 1 is implied in (11.7) and (11.8)) whilst M;, > 1 is necessary
here; the important thing is that I" should be positive throughout (cf. Kassoy &
Clarke (1985) for a description of ‘quenching’ of combustion activity by
compressibility effects when y; <Mp < 1).

The temperature perturbation equation (11.11) is formally the same in the present
two-dimensional steady supersonic flow as it is in a one-dimensional unsteady
environment (Clarke 1981). As a consequence, many results and implications from
studies of the latter equation (Clarke & Cant 1985; Jackson & Kapila 1985;
Friedman & Herrero 1988 ; Blythe & Crighton 1989) can be taken over directly to the
present case of exothermic steady flow.

In particular, the appearance of a locus or ‘path’ of logarithmic singularities in
solutions for 7', in the neighbourhood of y = x,(1), say, heralds the appearance of a
strong combustion wave, that consumes all of the reactant, and is the two-
dimensional steady (curved) analogue of the (straight) domain & described above.
So long as the radius of curvature of the locus x,(i) is much larger than its thickness
the local structure of the combustion wave at y,(y) will be given by Hugoniot-
curve-Rayleigh-line theory. The foregoing remarks draw on work by Kapila & Dold
(1991) and Dold & Kapila, summarized by Clarke (19896), for plane unsteady wave
development.

The possibilities for the control of combustion-energy release through such
mechanisms as the shaping of solid boundaries and the use of cross-stream variations
in chemical composition (cf. slip surfaces % in §5) are considerable. Combinations of
S -waves with ‘% +% > combustion domains need not be limited to the combinations
that make up such things as CJ detonations. That a much wider range of possibilities
for the association of shocks and fast flames exists can be inferred from both the
analytical work of Kapila & Dold (1991) and the numerical studies by Clarke e al.
(1986, 1990) and Clarke & Singh (1989) of one-dimensional unsteady situations.
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More extreme situations than those that can be described in the compass of O(¢)
perturbations in #-domains must be investigated by numerical methods. The
method outlined in §8 for two-dimensional steady supersonic flows has a number of
advantages when it comes to general body, body-plus-engine-intake, propulsive-duct
shapes in the presence of slip surfaces, and much more complex chemistry than has
been used for the illustrative/didactic purposes of the present account of the flow of
high-speed reactive gases.
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